
Frequency Estimator Design
ECE301 Final Project

Maxwell Riach
Electrical and Computer Engineering

North Carolina State University
Raleigh, USA

msriach@ncsu.edu

Arjun Nair
Electrical and Computer Engineering

North Carolina State University
Raleigh, USA

asnair2@ncsu.edu

Zachary Guess
Electrical and Computer Engineering

North Carolina State University
Raleigh, USA

zjguess@ncsu.edu

Abstract—This document highlights the design and simulation
of a frequency estimator.The electric network frequency (ENF) in
the US has a nominal value of f0 = 60Hz and its instantaneous
value fluctuates round the nominal value as a function of time.
The ENF signals can be captured by audio or video recordings
made in areas where there is electrical activity. This makes the
ENF a good criterion for the forensic analysis of a multimedia
recording. Using MATLAB and other resources, we have created
a program that can accurately capture and calculate several
points of info from an ENF signal.

I. INTRODUCTION

The electric network frequency (ENF) in the US has a
nominal value of f0 = 60Hz and its instantaneous value
fluctuates round the nominal value as a function of time. ”Fig.
1” The following plots show some sample ENF signals from
various power grids.

The ENF signals can be captured by audio or video record-
ings made in areas where there is electrical activity. This
makes the ENF a good criterion for the forensic analysis of a
multimedia recording. With a proper reference database, one
can tell when and where a recording was made, and whether
the recording has been tampered.

Fig. 1. ENF signals from various power grids.

II. DESIGN OF THE ENF SIGNAL

Let us formally define the ENF signal as

f(t) = f 0 + u(t) (1)

where f0 is the nominal value and u(t) is the random, fluctu-
ating component. Research found that the random signal u(t)
can be modeled as an auto regressive (AR) random process.
In this project, we assume that its sampled version (with a
discretization step size of 0.2 seconds) follows the first-order
AR process, namely,

u[n] = 0.9u[n− 1] + e[n] (2)

where the e[n] is a zero-mean white Gaussian noise process
with standard deviation σ = 0.05Hz. Note that the discretiza-
tion leads to the relationship of n = t/0.2, and the discretized
ENF signal can still be decomposed into

f [n] = f 0 + u[n] (3)

A. Simulating ENF Signals

As required by the assignment 5 different discrete ENF
signals each 10 minutes long have been plotted in ”Fig. 2”,
with the dynamic range of the vertical axis being limited to
around 60 Hz to ensure that the fluctuation can be easily
observed. The second part of figure 2 shows an enhanced
image of the first 100 seconds of the ENF signals from the
first part of the plot. This enhancement allows us to easily see
the separate signals and how they fluctuate over time.

Fig. 2. 5 discrete ENF signals each 10 minutes long

Since the calculated standard deviation of the simulated
ENF signals noise is about 0.11 Hz, we will likely see 99.8
percent of our signals within the range of 5.67 and 6.33 Hz.
Based on this calculated error, our ENF simulation appears to
be generating correctly.

B. Simulating Voltage Signal of Power Supply

Using frequency modulation with a sampling frequency
of f 0 = 150Hz a long sinusoidal-like signal x[n] whose
frequency changes every 0.2 second is generated for each ENF
signal. Using the formula,



x[n] = cos(ϕ+ 2π

n∑
l=1

f [l]/fs) (4)

The resultant Amplitude vs Time of each of the 5 discrete
ENF signals can be seen in ”Fig. 3”.

Fig. 3. Amplitude vs Time of each of the 5 discrete ENF signals

In this case phi is a randomly generated initial phase for
the frequency.

C. Implement Frequency Estimator

To analyze our sinusoidal and ENF functions we are tasked
to create a periodogram-based frequency estimator. Using our
estimator, we find the estimated power spectral density (PSD)
of our signals by applying a fast Fourier transform (FFT)
then square magnitude the found output. Note that the PSD
is a real, non-negative function of frequency. It is important
to compare the frequency estimator with the original function
built within MATLAB to ensure the accuracy of the PSD
created. Comparing across different frequencies as well was
ensured in order to create a higher degree of accuracy whilst
creating the frequency estimator. Note that since testing this
estimator on a 10-minute long recording, each time it is
important to only consider a small window of the signal.
Throughout testing of this function, it was vital to use test
signals to compare between Matlab integrated function of
creating a periodogram and the function created to ensure the
accuracy behind out function.

Fig. 4. Periodogram using FFT Example 1

Fig. 5. Periodogram using FFT Example 2

Fig. 6. Periodogram using FFT Example 3

Fig. 7. Periodogram using FFT Example 4

Fig. 8. Periodogram using FFT Example 5

D. Frequency Interpolation

Since the nfft parameter can only be an integer multiple of
the frequency resolution, we created a frequency interpolation
process. This process sharpens the estimated frequencies found
in our Frequency Estimator section. We not only consider the
frequency of the largest PSD value, but also the PSD value to
the left and right of the largest. Considering the left and right
PSD will give the interpolation a better smoothness to show
the largest PSD value.

Fig. 9. Example of Frequency Interpolation



E. Performance of Estimator Under Noisy Scenarios

Using a Signal-Noise-Ratio given by the formula

SNR = 10 ∗ log10(A
2/σ) (5)

where A2 represents the amplitude of the sinusoidal-like signal
x[n], and σ2 is the variance of the additive white Gaussian
noise v[n]. v[n] can be represented as follows by rearranging
the previous equation from Eq. 5.

v[n] = 10−SNR/10 ∗ x[n]2 (6)

Plotting y[n] using the equation

y[n] = x[n] + v[n] (7)

with varying Signal-Noise-Ratio’s from -40 to 40 in 10 step
increments respectively. The resulting waveform can be seen
in Fig. 9.

Fig. 10. Signal y[n] with varying Signal-Noise-Ratio’s

Using Mean Squared Error (MSE) to analyze the accuracy
of the frequency estimates it can be seen that with lower
Signal-Noise-Ratio’s the MSE would be closer to 0 (i.e. more
accurate). However, as the SNR increases the MSE increases
as well and would be closer to 1.0, highlighting the inaccuracy
as the SNR increases.

F. Discussion of findings on frequency estimation when pa-
rameters are changed

When creating a periodogram-based frequency estimator,
there are multiple parameters that can affect how a Power
Spectral Density (PSD) function can affect how said frequen-
cies are estimated. Just to re-iterate exactly the technique being
used, is that there is a moving window where the Fast Fourier
Transform (FFT) is computed in each said window, where
the PSD is then computed as an average of the FFTs over
all windows. To be specific, there are three main parameters
that are important for creating a periodogram based around
specific input signals. The first is the window length, whereas
the second is the percentage window overlap to no overlap,
and lastly the number of FFT points. Furthermore, we can
even introduce the opportunity to utilize difference windowing
functions however the Hanning window is the most widely
used as it has good frequency resolution and reduced spectral
leakage.

Fig. 11. PSD using Welch method for varying window sizes

The first parameter to go over is window length, where we
will be demonstrating how the data is changed with a Matlab
function. The number of segments the entire data will be
divided into is determined by win and noverlap. We will set the
overlaps into 3 different window sizes corresponding to 0.25, 1
and 5 seconds. It is fairly obvious that the smaller window size
will increase the total number of windows the data is divided
by. This will help smooth out the Power Spectral Display
frequency estimates because the random noise will be averaged
out. However the downside for the smaller size is that the
resolution is compromised as the distance between two points
is increased and results in a lower resolution.The ground-truth
frequency point is evident from the figure above where we
can see that even when the window size is approximately 0.25
seconds with the smooth PSD. Conversely, by increasing the
win to 1 second, we have improved the frequency and thus
can get a narrower lobe centered around the frequency peak.
While the total number of windows has now been decreased
due to the increased window length, it is still large enough to
cancel out most of the random noise. Lastly, when we analyze
when the window is switched to 5 seconds, we can clearly see
how the frequency resolution gets a lot sharper by also much
noisier as the effects of the noise is not canceled out.

Fig. 12. PSD using Welch method for varying overlap percentages

The second parameter to delve into is how the overlap
percentage can affect the Power Spectral Density. For us to
compare the affects of the different percentages, it is important



to keep the window size at a consistent size so for the figure
above the window is set to 3 seconds. 3 seconds allows the
sample to be semi rigid with noise while not compromising
the accuracy with an adequate enough resolution. Above we
have 4 different varying percentages of overlap ranging from
0, 25, 50, and 75 percent. Looking at the 0 percent overlap,
we can see that the PSD is relatively more noisy and bumpy
compared to the 50 percent overlap. By increasing the overlap
percentages (for a given window size), we increase the total
number of window which in turn helps in averaging the effects
of noise. However, increasing the overlap percent from 90
to 99, may not help due to the high correlation between the
window samples and thus averaging will not cancel the effect
of noise.


